Abstract

Abstract Most homotopies considered in the literature are linear homotopies of the form h i (λ) = λx i + (1—λ)y i , 0 ≤ λ ≤ 1. Although these prove to be adequate in most instances, they lack direct geometric significance because {h i (λ) | 0 ≤ λ ≤ 1} are not orbits of a vector field. On the other hand, the nonlinear homotopy g i (s) = e s x i + (1—e s )y i ,—∞ ≤ s ≤ 0, are orbits of a vector field (i.e., dg i /ds = g i —y i , g i (0) = x i ), and thus have direct geometric significance. This suggests that useful results can be obtained by replacing linear homotopy by transport along flows of smooth vector fields. The purpose of this paper is to elaborate on this simple idea. We define prehomotopy operators induced by vector fields on a manifold. These allow us to obtain finite transport relations and pre-Poincare lemmas that generalize the classical results. They are shown to reproduce the classical results as asymptotic limits and to obtain representations of all solutions of complete systems of exterio...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.