Abstract

We consider maps between Riemannian manifolds in which the map is a stationary point of the nonlinear Hodge energy. The variational equations of this functional form a quasilinear, nondiagonal, nonuniformly elliptic system which models certain kinds of compressible flow. Conditions are found under which singular sets of prescribed dimension cannot occur. Various degrees of smoothness are proven for the sonic limit, high-dimensional flow, and flow having nonzero vorticity. The gradient flow of solutions is estimated. Implications for other quasilinear field theories are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.