Abstract
A nonlinear hierarchical model predictive control (MPC) framework is proposed and applied to maximize the thermal endurance of aircraft. Effectively controlling the fuel temperatures in a nonlinear multitimescale aircraft fuel thermal management system (FTMS) requires controllers capable of long-term planning and fast update rates. In this article, a two-level hierarchical MPC controller is formulated using successive linearization (SL) that directly accounts for the multitimescale and nonlinear system dynamics to achieve accurate predictive capabilities and computational efficiency. Detailed simulation results show that the proposed hierarchical structure can increase aircraft thermal endurance by at least 21% compared to a centralized approach while significantly reducing the computational cost. The results also show that SL provides a valuable framework for efficiently accounting for nonlinear system dynamics within both levels of the hierarchical MPC formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.