Abstract

The electrostatic gyrokinetic nonlinear turbulence code NLT, which is based on a numerical Lie-transform perturbation method, is developed. For improving the computational efficiency and avoiding the numerical instabilities, field-aligned coordinates and a Fourier filter are adopted in the NLT code. Nonlinear tests of the ion temperature gradient driven turbulence with adiabatic electrons are performed for verifying the NLT code by comparing with other gyrokinetic codes. The time evolution of the ion heat diffusivity and the relation between the ion heat diffusivity and the ion temperature gradient are compared in the nonlinear tests. Good agreements are achieved from the nonlinear benchmarks between the NLT code and other codes. The mode structures of the perturbed electric potential representing different phases have been simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.