Abstract

The frequency and the direction of propagation of an oscillatory wave train may be read on its oscillatory spectrum. Many works in geometrical optics allow the study of at most countable oscillatory spectra. In these works, the number of directions of propagation is therefore at most countable, while many physical effects would require a continuous infinity of directions of propagation. The goal of this paper is to make the nonlinear geometrical optics for wave trains with such a continuous oscillatory spectrum. This requires the introduction of new spaces, which are Wiener algebras associated to spaces of vector-valued measures with bounded total variation. We also make qualitative studies on the properties of wave trains with continuous oscillatory spectrum, and on the incidence of the nonlinearity on such oscillations. We finally suggest an application of the results of this paper to the study of both the spontaneous and the stimulated Raman scatterings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.