Abstract
Earlier research in advanced vehicle control systems (AVCS) has focused on automated lateral and headway control during low-g maneuvers. However, most emergency situations involve high-g maneuvers where vehicle performance becomes nonlinear. Robust controllers need to be developed that can react to these emergency situations. This paper investigates the development of a nonlinear-gain-optimized (NGO) controller for automated lateral control during emergencies. The strategy is to use a linear model to define the state model and a nonlinear model to optimize the feedback gains for high-g emergency maneuvers. The performance of the NGO controller is presented at 15 and 30 m/s for a step lane change and a double lane change. The NGO controller's robustness is investigated with respect to changes in tire parameters and the number of passengers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.