Abstract

The shift in the resonance frequency of a two-port quartz surface acoustic wave (SAW) resonator operating as a gas sensor without a selective layer is studied versus the power of an SAW excited in the resonator. At working frequencies of the resonator (≈389 MHz) placed in the flow of moisture-containing nitrogen gas, an anomalously large positive shift of the resonance frequency is observed as the SAW power exceeds 1 mW. This shift is one order of magnitude larger than that due to the nonlinear amplitude-frequency effect, which is known for quartz SAW resonators. Possible physical mechanisms underlying this phenomenon are analyzed. Experimental data indicate that such a shift is associated with the influence of a powerful SAW on sorption processes taking place on the active surface of the resonator rather than being a direct consequence of heating of the SAW substrate by the powerful SAW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call