Abstract

A noble measurement method by using a homodyne interferometer and Hilbert transform has been proposed for characterizing frequency sweeping light sources used in traditional optical frequency domain reflectometer (OFDR) and optical frequency domain imaging (OFDI). A Michelson interferometer with a tunable laser generates a sinusoidal beating signal. A phase of measured beating signal as a function of time is approximately proportional to optical frequency of the swept light source during frequency tuning and can be obtained by the Hilbert transformation. Thus, optical frequency chirp can be determined by a simple equation related with the phase of the beating signal from the interferometer. We have demonstrated the effectiveness and the simplicity of our proposed method by testing a temperature-tuned frequency sweeping DFB-LD and a commercial external cavity tunable laser source as practical examples. In the case of DFB-LD, the frequency sweep becomes more linear while the amount of frequency sweep saturates as the amplitude of the control voltage applied to a TEC driver increases, and the frequency-tuning rate increases as the repetition rate decreases. We also found that a commercial frequency-sweeping laser has a feed back control to adjust its frequency-sweeping rate such that the tuning rate oscillates around an intended value as a function of time. We have demonstrated the possibility of using a self-homodyne interferometer as a powerful tool for characterizing frequency sweeping laser sources. We expect this method will be useful for improving the performance of many optical frequency domain measurement techniques such as OFDR, FD-OCT or OFDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call