Abstract
The nonlinear free flexural vibration of skew nanoplates is studied by considering the influences of free surface energy and size effect (small scale) simultaneously. The formulations are derived based on classical plate theory (CPT) in conjunction with nonlocal and surface elasticity theories using Hamilton's principle. Green's strain tensor together with von Kármán assumptions is employed to model the geometrical nonlinearity. The free surfaces are modeled as two-dimensional membranes adhering to the underlying bulk material without slipping. The solution algorithm is based on the transformation of the governing differential equation from the physical domain to a rectangular computational one, and discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. The effect of small scale parameter and surface effect together with the geometrical parameters and boundary conditions on the nonlinear frequency parameters of the skew nanoplates are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.