Abstract

The nonlinear free vibration behavior of shear deformable sandwich porous beam is investigated in this paper within the context of Timoshenko beam theory. The proposed beam is composed of two face layers and a functionally graded porous core which contains internal pores following different porosity distributions. Two non-uniform functionally graded distributions are considered in this paper based on the equivalent beam mass, associated with a uniform distribution for purpose of comparison. The elastic moduli and mass density are assumed to vary along the thickness direction in terms of the coefficients of porosity and mass density, whose relationship is determined by employing the typical mechanical characteristic of an open-cell metal foam. The Ritz method and von Kármán type nonlinear strain-displacement relationships are applied to derive the equation system, which governs the nonlinear vibration behavior of sandwich porous beams under hinged or clamped end supports. A direct iterative algorithm is then used to solve the governing equation system to predict the linear and nonlinear frequencies which are presented by a detailed numerical study to discuss the effects of porosity coefficient, slenderness ratio, thickness ratio and to compare the varying porosity distributions and boundary conditions, providing a feasible way to improve the vibration behavior of sandwich porous beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.