Abstract
Nonlinear frequency responses of the laminated carbon/epoxy composite curved shell panels have been investigated numerically and validated with in-house experimentation. The nonlinear responses have been computed numerically via customised computer code developed in MATLAB environment with the help of current mathematical model in conjunction with the direct iterative method. The mathematical model of the layered composite structure derived using various shear deformable kinematic models (two higher-order theories) in association with Green-Lagrange nonlinear strains. The current model includes all the nonlinear higher-order strain terms in the formulation to achieve generality. Further, the modal test has been conducted experimentally to evaluate the desired frequency values and are extracted via the transformed signals using fast Fourier transform technique. In addition, the results are computed using the simulation model developed in commercial finite element package (ANSYS) via batch input technique. Finally, numerical examples are solved for different geometrical configurations and discussed the effects of other design parameters (thickness ratio, curvature ratio and constraint condition) on the fundamental linear and nonlinear frequency responses in details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.