Abstract

This paper examines free-surface and internal-pycnocline sloshing motions in two-dimensional numerical wave tanks subjected to horizontal excitation. In all of the cases studied, the rectangular tank of liquid has a width-to-depth ratio of 2. The first set of results are based on an inviscid, fully nonlinear finite difference free-surface model. The model equations are mapped from the physical domain onto a rectangular domain. Case studies at and off resonance are presented illustrating when linear theory is inadequate. The next set of results are concerned with analyzing internal waves induced by sloshing a density-stratified liquid. Nonlinear, viscous flow equations are solved. Two types of breaking are discussed. One is associated with a shear instability which causes overturning on the lee side of a wave that moves towards the center of the container; this wave is generated as the dominant sloshing mode recedes from the sidewall towards the end of the first sloshing cycle. The other is associated with the growth of a convective instability that initiates the formation of a lip of heavier fluid above lighter fluid behind the crest of the primary wave as it moves up the sidewall. The lip grows into a bore-like structure as it plunges downward. It falls downward behind the primary wave as the primary wave moves up the sidewall and ahead of the primary wave as this wave recedes from the sidewall. This breaking event occurs near the end of the first cycle of sloshing, which is initiated from a state of rest by sinusoidal forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.