Abstract

In this paper, we formulate a fractional order viscoelastic model for large deformations and develop an algorithm for the integration of the constitutive response. The model is based on the multiplicative split of the deformation gradient into elastic and viscous parts. Further, the stress response is considered to be composed of a nonequilibrium part and an equilibrium part. The viscous part of the deformation gradient (here regarded as an internal variable) is governed by a nonlinear rate equation of fractional order. To solve the rate equation the finite element method in time is used in combination with Newton iterations. The method can handle nonuniform time meshes and uses sparse quadrature for the calculations of the fractional order integral. Moreover, the proposed model is compared to another large deformation viscoelastic model with a linear rate equation of fractional order. This is done by computing constitutive responses as well as structural dynamic responses of fictitious rubber materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.