Abstract

It is a long-standing problem to preserve fine scale features such as texture in the process of deblurring. In order to deal with this challenging but imperative issue, we establish a framework of nonlinear fractional diffusion equations, which performs well in deblurring images with textures. In the new model, a fractional gradient is used for regularization of the diffusion process to preserve texture features and a source term with blurring kernel is used for deblurring. This source term ensures that the model can handle various blurring kernels. The relation between the regularization parameter and the deblurring performance is investigated theoretically, which ensures a satisfactory recovery when the blur type is known. Moreover, we derive a digital fractional diffusion filter that lives on images. Experimental results and comparisons show the effectiveness of the proposed model for texture-preserving deblurring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call