Abstract

Measurements of forces experienced by a submerged horizontal cylinder with its axis parallel to the crests in deep-water waves reveal nonlinear components with frequencies up to three times the fundamental wave frequency. The dominant nonlinear contribution to the loading is at the third order in the wave amplitude, and, for Keulegan-Carpenter numbers approaching 2, its magnitude was found to be as much as one-half that of the inertia force. It is suggested that the third-order force is associated with circulation generated by steady streaming in the oscillatory boundary layer on the cylinder. At higher Keulegan-Carpenter numbers, form drag becomes increasingly important, and velocity measurements close to the cylinder show the rapid development of the wake. Observations of nonlinear features of the transmitted waves are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.