Abstract
We develop a nonlinear force-free field (NLFFF) extrapolation code based on the magnetohydrodynamic (MHD) relaxation method. We extend the classical MHD relaxation method in two important ways. First, we introduce an algorithm initially proposed by cite{2002JCoPh.175..645D} to effectively clean the numerical errors associated with $nabla cdot vec{B}$. Second, the multi-grid type method is implemented in our NLFFF to perform direct analysis of the high-resolution magnetogram data. As a result of these two implementations, we successfully extrapolated the high resolution force-free field introduced by cite{1990ApJ...352..343L} with better accuracy in a drastically shorter time. We also applied our extrapolation method to the MHD solution obtained from the flux-emergence simulation by cite{2012ApJ...748...53M}. We found that NLFFF extrapolation may be less effective for reproducing areas higher than a half-domain, where some magnetic loops are found in a state of continuous upward expansion. However, an inverse S shaped structure consisting of the sheared and twisted loops formed in the lower region can be captured well through our NLFFF extrapolation method. We further discuss how well these sheared and twisted fields are reconstructed by estimating the magnetic topology and twist quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.