Abstract

AbstractEnergy production by laser driven fusion energy is highly matured by spherical compression and ignition of deuterium-tritium (DT) fuel. An alternative scheme is the fast ignition where petawatt (PW)-picosecond (ps) laser pulses are used. A significant anomaly was measured and theoretically analyzed with very clean PW-ps laser pulses for avoiding relativistic self focusing. This permits a come-back of the side-on ignition scheme of uncompressed solid DT, which is in essential contrast to the spherical compression scheme. The conditions of side-on ignition thresholds needed exorbitantly high energy flux densities E*. These conditions are now in reach by using PW-ps laser pulses to verify side-on ignition for DT. Generalizing this to side-on igniting solid state density proton-Boron-11 (HB11) arrives at the surprising result that this is one order of magnitude more difficult than the DT fusion. This is in contrast to the well known impossibility of igniting HB11 by spherical laser compression and may offer fusion energy production with exclusion of neutron generation and nuclear radiation effects with a minimum of heat pollution in power stations and application for long mission space propulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.