Abstract

Nonlinear flexural vibration is investigated for rectangular Reissner moderately thick plates and sandwich plates. The fundamental equations and boundary conditions are expressed in unified dimensionless form for rectangular moderately thick plates and sandwich plates. Highly accurate solutions of series form with many different movable and immovable boundary conditions, especially with unsymmetrical boundary conditions, are obtained by means of the method of harmonic balance and by developing a new technique of mixed Fourier series in nonlinear analysis. The nonlinear partial differential equations are reduced to an infinite set of simultaneous nonlinear algebraic equations, which are truncated in numerical computations. Solutions of the nonlinear fundamental frequency of rectangular plates are obtained by iteration. The multimode approach includes not only the influences of transverse shearing deformation and rotatory inertia, but also the coupling effect of vibrating modes on the nonlinear fundamental frequency. The present solutions are satisfactory in comparison with other available results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.