Abstract

The objective in stochastic filtering is to reconstruct information about an unobserved (random) process, called the signal process, given the current available observations of a certain noisy transformation of that process. Usually X and Y are modeled by stochastic differential equations driven by a Brownian motion or a jump (or Levy) process. We are interested in the situation where both the state process X and the observation process Y are perturbed by coupled Levy processes. More precisely, L=(L_1,L_2) is a 2--dimensional Levy process in which the structure of dependence is described by a Levy copula. We derive the associated Zakai equation for the density process and establish sufficient conditions depending on the copula and $L$ for the solvability of the corresponding solution to the Zakai equation. In particular, we give conditions of existence and uniqueness of the density process, if one is interested to estimate quantities like P( X(t)>a), where a is a threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.