Abstract

In this paper, we develop an approach for filtering state variables in the setting of continuous-time jump-diffusion models. Our method computes the filtering distribution of latent state variables conditional only on discretely observed observations in a manner consistent with the underlying continuous-time process. The algorithm is a combination of particle filtering methods and the filling-in-the-missing-data estimators which have recently become popular. We provide simulation evidence to verify that our method provides accurate inference. As an application, we apply the methodology to the multivariate jump models in Duffie, Pan and Singleton (2000) using daily S&P 500 returns from 1980-2000 and we investigate option pricing implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.