Abstract

The paper investigates the problem of nonlinear filtering applied to spacecraft navigation. Differential algebraic (DA) techniques are proposed as a valuable tool to implement the higher-order numerical and analytic extended Kalman filters. Working in the DA framework allows us to consistently reduce the required computational effort without losing accuracy. The performance of the proposed filters is assessed on different orbit determination problems with realistic orbit uncertainties. The case of nonlinear measurements is also considered. Numerical simulations show the good performance of the filter in case of both complex dynamics and highly nonlinear measurement problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.