Abstract

In this work, we develop a method for nonlinear feedback control of the roughness of a one-dimensional surface whose evolution is described by the stochastic Kuramoto-Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation. We initially formulate the stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations by using modal decomposition. A finite-dimensional approximation of the stochastic KSE is then derived that captures the dominant mode contribution to the surface roughness. A nonlinear feedback controller is then designed based on the finite-dimensional approximation to control the surface roughness. An analysis of the closed-loop nonlinear infinite-dimensional system is performed to characterize the closed-loop performance enforced by the nonlinear feedback controller in the closed-loop infinite-dimensional system. The effectiveness of the proposed nonlinear controller and the advantages of the nonlinear controller over a linear controller resulting from the linearization of the nonlinear controller around the zero solution are demonstrated through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.