Abstract

Feature selection is an important and effective data preprocessing method, which can remove the noise and redundant features while retaining the relevant and discriminative features in high-dimensional data. In real-world applications, the relationships between data samples and their labels are usually nonlinear. However, most of the existing feature selection models focus on learning a linear transformation matrix, which cannot capture such a nonlinear structure in practice and will degrade the performance of downstream tasks. To address the issue, we propose a novel nonlinear feature selection method to select those most relevant and discriminative features in high-dimensional dataset. Specifically, our method learns the nonlinear structure of high-dimensional data by a neural network with cross entropy loss function, and then using the structured sparsity norm such as l2,p -norm to regularize the weights matrix connecting the input layer and the first hidden layer of the neural network model to learn weight of each feature. Therefore, a structural sparse weights matrix is obtained by conducting nonlinear learning based on a neural network with structured sparsity regularization. Then, we use the gradient descent method to achieve the optimal solution of the proposed model. Evaluating the experimental results on several synthetic datasets and real-world datasets shows the effectiveness and superiority of the proposed nonlinear feature selection model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call