Abstract

AbstractFatigue damage modelling and life prediction of engineering components under variable amplitude loadings are critical for ensuring their operational reliability and structural integrity. In this paper, five typical nonlinear fatigue damage accumulation models are evaluated and compared by considering the influence of load sequence and interaction on fatigue life of P355NL1 steels. Moreover, a new nonlinear fatigue damage accumulation model is proposed to account for these two effects. Experimental datasets of pressure vessel steel P355NL1 and four other materials under two‐block loadings are used for model comparative study. Results indicate that the proposed model yields more accurate fatigue life predictions for the five materials than the other models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call