Abstract

The debate surrounding fast magnetic energy dissipation by magnetic reconnection has remained a fundamental topic in the plasma universe, not only in the Earth's magnetosphere but also in astrophysical objects such as pulsar magnetospheres and magnetars, for more than half a century. Recently, nonthermal particle acceleration and plasma heating during reconnection have been extensively studied, and it has been argued that rapid energy dissipation can occur for a collisionless “thin” current sheet, the thickness of which is of the order of the particle gyroradius. However, it is an intriguing enigma as to how the fast energy dissipation can occur for a “thick” current sheet with thickness larger than the particle gyroradius. Here we demonstrate, using a high-resolution particle-in-cell simulation for a pair plasma, that an explosive reconnection can emerge with the enhancement of the inertia resistivity due to the magnetization of the meandering particles by the reconnecting magnetic field and the shrinkage of the current sheet. In addition, regardless of the initial thickness of the current sheet, the timescale of the nonlinear explosive reconnection is tens of the Alfvén transit time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.