Abstract

Various solitary wave excitations are found for a Bose-Einstein condensate in presence of two hybrid potentials in the form of triple mixtures of optical lattices. One of these potentials comprises of a combination of two important lattice profiles, such as frustrated optical lattice and double-well super-lattice, within one. Another represents a composite lattice combination, resulting in a wider and deeper frustrated optical lattice. The dynamical equation for such a system is solved by the exact analytical method to obtain a bright solitary wave, periodic wave and cnoidal wave excitations. We also report Anderson localization, bifurcation of condensate at the center and a competition between two different types of localizations upon trap engineering. Dynamical and structural stability analyses are also carried out, which reveal the obtained solutions as extremely stable for structural noise incorporation and sufficiently stable for dynamical stability. These triple mixtures of optical lattices impart better tunability on the condensate profile, which has made this system a true quantum simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call