Abstract

In this paper, we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange, and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions, significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of nonrelativistic and relativistic degeneracies exist. Furthermore, it is remarked that first-order corrections due to such interactions (which are proportional to the fine-structure constant) are more significant on soliton characteristics (particularly the amplitude) in the nonrelativistic plasma degeneracy regime rather than the relativistic one. In the relativistic degeneracy regime, however, these effects become less important and the electron quantum-tunneling and Pauli-exclusion dominate the nonlinear wave dynamics. Hence, application of non-interacting Fermi-Dirac QHD model to study the nonlinear wave dynamics in quantum plasmas, such as in compact stars is most appropriate for the relativistic degeneracy regime rather than nonrelativistic one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call