Abstract
We analyze nonlinear excitation in a four-level atomic system that exhibits electromagnetically induced transparency induced by a strong coupling laser. We show that, at the line center of the atomic transition, the nondegenerate two-photon excitation in the dressed states can be enhanced by constructive quantum interference in two excitation paths while the linear absorption is inhibited by destructive quantum interference. We report an experimental study of the interference-enhanced two-photon absorption in a multilevel Λ-type rubidium atomic system and compare the measurements with the theoretical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.