Abstract

Abstract The nonlinear evolution of linearly unstable barotropic boundary currents, consisting of three piecewise uniform vorticity regions, was investigated using the contour dynamics method. A physical interpretation of the nonlinear behavior of the unstable currents is also presented. The contour dynamics experiments reveal that the nonlinear behavior can be classified into three regimes dependent on the vorticity distribution of the basic flow and the wavelength of the unstable wave. In the first breaking wave regime a regular wave train appears with crests breaking on their upstream side. In the second vortex pair regime the unstable wave evolves into a mushroomlike shape consisting of two vortices having opposite signs, which, due to self-induced flow, advect coastal water far away from the boundary. In the third boundary trapped vortex regime the vortices generated in both the offshore and coastal shear regions remain trapped near the coastal boundary. Differences among the three regimes are mainly...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.