Abstract
We study the nonlinear evolution of a pair of oblique instability waves in a supersonic boundary layer over a flat plate in the nonlinear non-equilibrium viscous critical layer regime. The instability wave amplitude is governed by the same integro-differential equation as that derived by Goldstein & Choi (1989) in the inviscid limit and by Wu, Lee & Cowley (1993) with viscous effects included, but the coefficient appearing in this equation depends on the mean flow and linear neutral stability solution of the supersonic boundary layer. This coefficient is evaluated numerically for the Mach number range over which the (inviscid) first mode is the dominant instability. Numerical solutions to the amplitude equation using these values of the coefficient are obtained. It is found that, for insulated and cooled wall conditions and angles corresponding to the most rapidly growing waves, the amplitude ends in a singularity at a finite downstream position over the entire Mach number range regardless of the size of the viscous parameter. The explosive growth of the instability waves provides a mechanism by which the boundary layer can break down. A new feature of the compressible problem is the nonlinear generation of a spanwise-dependent mean distortion of the temperature along with that of the velocity found in the incompressible case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.