Abstract

A spectral method is used to explore the nonlinear evolution of known linear instabilities in a 2D differentially rotating magneto-hydrodynamic shell, representing the solar tachocline. Several simulations are presented, with a range of outcomes for the magnetic field configuration. Most spectacularly, the `clam instability', which occurs for solar differential rotation and a strong broad toroidal magnetic field structure, results in the field tipping over by 90° and reconnecting. A common characteristic of all the simulations though is that the nonlinear instabilities produce a strong angular momentum mixing effect which pushes the rotation towards a solid body form. It is argued that this may be the mechanism required by the model of Spiegel and Zahn to limit the tachocline's thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.