Abstract

The standard formulation of the high-energy evolution in perturbative QCD, based on the Balitsky-Kovchegov equation, is known to suffer from severe instabilities associated with radiative corrections enhanced by double transverse logarithms, which occur in all orders starting with the next-to-leading one. Over the last years, several methods have been devised to resum such corrections by enforcing the time-ordering of the successive gluon emissions. We observe that the instability problem is not fully cured by these methods: various prescriptions for performing the resummation lead to very different physical results and thus lack of predictive power. We argue that this problem can be avoided by using the rapidity of the dense target (which corresponds to Bjorken x) instead of that of the dilute projectile as an evolution time. This automatically ensures the proper time-ordering and also allows for a direct physical interpretation of the results. We explicitly perform this change of variables at NLO. We observe the emergence of a new class of double logarithmic corrections, potentially leading to instabilities, which are however less severe, since disfavoured by the typical BK evolution for “dilute-dense” scattering. We propose several prescriptions for resumming these new double-logarithms to all orders and find only little scheme dependence: different prescriptions lead to results which are consistent to each other to the accuracy of interest. We restore full NLO accuracy by completing one of the resummed equations (non-local in rapidity) with the remaining NLO corrections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.