Abstract
Hypersonic boundary-layer flows over a circular cone at moderate angle of incidence can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to the more efficient excitation of stationary crossflow vortices by surface roughness, a possible path to transition in such flows corresponds to rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. In the present paper, the previous analyses of crossflow instability over a 7- degree half-angle, yawed circular cone in a Mach 6 free stream have been extended to the nonlinear evolution of azimuthally localized crossflow vortex packets and the amplification characteristics and nonlinear breakdown of high-frequency secondary instabilities associated with those packets. A comparison between plane marching PSE and direct Navier-Stokes simulations (DNS) reveals favorable agreement in regard to mode shapes, most amplified disturbance frequencies, and N-factor evolution. In contrast, the quasi-parallel predictions are found to result in severe underprediction of the N-factors. The direct numerical simulations also indicate that the breakdown of secondary instabilities in a 3D hypersonic boundary layer shares certain common features with the previous computations of crossflow transition over subsonic swept wings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.