Abstract

Abstract The equilibration of two-dimensional baroclinic waves differs fundamentally from equilibration in three dimensions because two-dimensional eddies cannot develop meridional temperature or velocity structure. It was shown in an earlier paper that frontogenesis together with diffusive mixing in a two-dimensional Eady wave brings positive potential vorticity (PV) anomalies deep into the atmosphere from both boundaries and allows the disturbance to settle into a steady state without meridional gradients. Here we depart from the earlier explanation of this equilibration and associate the PV intrusions with essentially the same kind of vortex “roll-up” that characterizes the evolution of barotropic shear layers. To avoid subgrid turbulence parameterizations and computational diffusion, the analogy is developed using Eady's generalized baroclinic instability problem. Eady's generalized model has two semi-infinite regions of large PV surrounding a layer of relatively small PV. Without boundaries, frontal ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.