Abstract
An operator-theoretic method for the investigation of nonlinear equations in soliton physics is discussed comprehensively. Originating from pioneering work of Marchenko, our operator-method is based on new insights into the theory of traces and determinants on operator ideals. Therefore, we give a systematic and concise approach to some recent developments in this direction which are important in the context of this paper. Our method is widely applicable. We carry out the corresponding arguments in detail for the Kadomtsev-Petviashvili equation and summarize the results concerning the Korteweg-de Vries and the modified Korteweg-de Vries equation as well as for the sine-Gordon equation. Exactly the same formalism works in the discrete case, as the treatment of the Toda lattice, the Langmuir and the Wadati lattice shows. AMS classification scheme numbers: 35C05, 35Q51, 35Q53, 35Q58, 47D50, 47N20
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.