Abstract

A nonlinear equation describing curved stationary flames with arbitrary gas expansion, θ=ρfuel/ρburnt, subject to the Landau–Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for θ→1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in θ−1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the flame velocity and the flame front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of θ, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.