Abstract
Energy Efficiency (EE) has become an essential metric in Device-to-Device (D2D) communication underlaying Unmanned Aerial Vehicles (UAVs) Among the several technologies that provide significant energy, simultaneous wireless information and power transfer (SWIPT) has been proposed as a promising solution to improve EE. However, it is a challenging task to study the EE under nonlinear energy harvesting (EH) due to the limited sensitivity and the composition of the non-linear circuit. Moreover, when D2D users transmit information using the EH from UAVs, interferences to cellular users occur and deteriorate the throughput. To tackle these problems, we leverage concepts from artificial intelligence (AI) to optimize EE of UAV-assisted D2D communication. Specifically, multi-agent deep reinforcement learning was proposed to jointly maximize throughput and EE, where the reward function is defined in terms of the introduced goal. Simulation results verify the supremacy of proposed approach over traditional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.