Abstract

The emission dynamics in photoexcited planar conjugated polymer waveguides is investigated at high excitation densities. Using femtosecond pump/probe experiments and photoluminescence spectroscopy we investigate the interplay of nonlinear radiative and nonradiative recombination processes. Amplified spontaneous emission (ASE) leads to an ultrafast depletion of the excited state at excitation densities above 1018 cm−3 in an ladder-type poly(p-phenylene) film deposited on a glass substrate. Owing to the different waveguide structure ASE is not observed for the same polymer deposited on an indium–tin–oxide (ITO)-coated substrate. Instead, we observe nonradiative bimolecular annihilation with a coefficient γ=4.2×10−9 cm3 s−1. Our results demonstrate that even in the absence of a resonator collective stimulated emission can be much more efficient than nonradiative recombination. A mandatory prerequisite, however, is a suitable waveguide design. The use of ITO as a hole-injecting contact is problematic due to its high refractive index and its relatively high losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.