Abstract

Nonlinear electromagnetic force is a common phenomenon in electromagnetic linear actuators (EMLA). This nonlinearity limits the application in high-precision control systems. For facilitating the controller design, the influencing factors of nonlinear electromagnetic force were analyzed, and the quadratic polynomial with unknown weights was designed to approximate the nonlinear relationship among electromagnetic force, excitation current and displacement. An adaptive integral robust control algorithm based on electromagnetic force compensation (AIRC-FC) was designed, which combined the adaptive control law of electromagnetic force nonlinear compensation, stable feedback and error signal continuous integral robust control. The tracking performance and the adaptability of the EMLA with and without compensation control were analyzed under different loads. The results show that AIRC-FC improve the tracking performance of the EMLA effectively, and maintain high control accuracy under different loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.