Abstract

An analytical description of the interaction of laser light with a foil, described as a thin slab of overdense plasma, is presented together with the results of multidimensional particle in cell simulations. The matching conditions at the foil result in nonlinear boundary conditions for the wave equation. The conditions for relativistic transparency are given. The interaction with the foil leads to shaping of the laser pulse. In the case of oblique incidence of a relativistically intense pulse, nonlinear coupling modifies the pulse polarization and causes emission of high harmonics and generation of an electric current. Strong focalization of the reflected pulse, in particular in three-dimensional simulations, is observed for normal and oblique incidence due to the induced distortion of the foil surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.