Abstract

Non-linear conduction in a charge-ordered manganese oxide Pr$_{0.63}$Ca$_{0.37}$MnO$_3$ is reported. To interpret such a feature, it is usually proposed that a breakdown of the charge or orbitally ordered state is induced by the current. The system behaves in such a way that the bias current may generate metallic paths giving rise to resistivity drop. One can describe this feature by considering the coexistence of localized and delocalized electron states with independent paths of conduction. This situation is reminiscent of what occurs in charge density wave systems where a similar non-linear conduction is also observed. In the light of recent experimental results suggesting the development of charge density waves in charge and orbitally ordered manganese oxides, a phenomenological model for charge density waves motion is used to describe the non-linear conduction in Pr$_{0.63}$Ca$_{0.37}$MnO$_3$. In such a framework, the non-linear conduction arises from the motion of the charge density waves condensate which carries a net electrical current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.