Abstract

The elastic response of curved beams subjected to moving vertical loads and dynamic loads is investigated. Incremental dynamic equilibrium equations are derived by using the principle of virtual work. Newmark's step-by-step procedure is adopted to discretise the dynamic equilibrium equations and obtain the time history response. Geometric nonlinearities due to large deflections and rotations are taken into account. A total Lagrangian finite element formulation is developed. The numerical models are compared with the existing analytical solutions and employed to show the effects of geometric nonlinearities as well as the initial curvature on the dynamic behaviour of curved I-beams. It is shown that the geometric nonlinearities are significant even for service loads. The nonlinear behaviour of a curved beam is substantially different from the nonlinear behaviour of a straight beam when the initial curvature is not small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.