Abstract
In this study, elastic/plastic buckling analysis of thick skew plates subjected to uniaxial compression or biaxial compression/tension loading using the generalized differential quadrature method is presented for the first time. The governing differential equations are derived based on the incremental and deformation theories of plasticity and first-order shear deformation theory. The elastic/plastic behavior of the plates is described by the Ramberg–Osgood model. Generalized differential quadrature discretization rules in association with an exact coordinate transformation are simultaneously used to transform and discretize the equilibrium equations and the related boundary conditions. The results are compared with the previously published data to verify the established methodology and procedures. The effect of skew angle and thickness ratio on the convergence and accuracy of the method are studied. Moreover, the effects of aspect, loading and thickness ratios, skew angle, incremental, and deformation theories and different types of boundary conditions on the buckling coefficients are presented in detail. The results show that the difference between the incremental and deformation theories becomes greater with increasing thickness ratio and constraints at boundary conditions. Furthermore, the skew angle also has an important effect on differences between those theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.