Abstract

We propose a new unfitted/immersed computational framework for nonlinear solid mechanics, which bypasses the complexities associated with the generation of CAD representations and subsequent body-fitted meshing. This approach allows to speed up the cycle of design and analysis in complex geometry and requires relatively simple computer graphics representations of the surface geometries to be simulated, such as the Standard Tessellation Language (STL format). Complex data structures and integration on cut elements are avoided by means of an approximate boundary representation and a modification (shifting) of the boundary conditions to maintain optimal accuracy. An extensive set of computational experiments in two and three dimensions is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.