Abstract

The sliding columnar phase is a new liquid-crystalline phase of matter composed of two-dimensional smectic lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and has three important elastic constants: the compression, rotation, and bending moduli, $B$, $K_y$, and $K$. The rotationally invariant theory contains anharmonic terms that lead to long wavelength renormalizations of the elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid crystals. We calculate these renormalizations at the critical dimension $d=3$ and find that $K_y(q) \sim K^{1/2}(q) \sim B^{-1/3}(q) \sim (\ln(1/q))^{1/4}$, where $q$ is a wavenumber. The behavior of $B$, $K_y$, and $K$ in a model that includes fluctuations perpendicular to the layers is identical to that of the simple model with rigid layers. We use dimensional regularization rather than a hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.