Abstract

The paper presents experimental data for linear and nonlinear elastic waves in an acute-angled wedge made of D16 isotropic polycrystalline alloy with defects. The localization of waves at the edge of the wedge has been studied using laser vibrometry. The velocities of wedge waves have been measured by a pulse method in the frequency range 0.25–1.50 MHz. Measurements have not revealed any dispersion. The second harmonic of the wedge waves has been found. The dependences of the velocity and amplitude of the second harmonic on the amplitude of the first harmonic have been studied. It is noted that nonlinear effects observed in wedge waves may be explained in terms of the Murnaghan classical five-constant theory of elasticity. They are attributed to a defect-induced structural nonlinearity present in the wedge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.