Abstract

The nonlinear in-plane elastic properties of graphene are calculated using density-functional theory. A thermodynamically rigorous continuum description of the elastic response is formulated by expanding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. Upon accounting for the symmetries of graphene, a total of fourteen nonzero independent elastic constants are determined by least-squares fit to the ab initio calculations. The nonlinear continuum description is valid for infinitesimal and finite strains under arbitrary in-plane tensile loading in circumstance for which the bending stiffness can be neglected. The continuum formulation is suitable for incorporation into the finite element method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call