Abstract
Semiclassical (WKB) techniques are commonly used to find the large-energy behavior of the eigenvalues of linear time-independent Schrödinger equations. In this talk we generalize the concept of an eigenvalue problem to nonlinear differential equations. The role of an eigenfunction is now played by a separatrix curve, and the special initial condition that gives rise to the separatrix curve is the eigenvalue. The Painlevé transcendents are examples of nonlinear eigenvalue problems, and semiclassical techniques are devised to calculate the behavior of the large eigenvalues. This behavior is found by reducing the Painlevé equation to the linear Schrödinger equation associated with a non-Hermitian PT-symmetric Hamiltonian. The concept of a nonlinear eigenvalue problem extends far beyond the Painlevé equations to huge classes of nonlinear differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.