Abstract

The steady-state and time-dependent flow transitions observed in a well-characterized viscoelastic fluid flowing through an abrupt axisymmetric contraction are characterized in terms of the Deborah number and contraction ratio by laser-Doppler velocimetry and flow visualization measurements. A sequence of flow transitions are identified that lead to time-periodic, quasi-periodic and aperiodic dynamics near the lip of the contraction and to the formation of an elastic vortex at the lip entrance. This lip vortex increases in intensity and expands outwards into the upstream tube as the Deborah number is increased, until a further flow instability leads to unsteady oscillations of the large elastic vortex. The values of the critical Deborah number for the onset of each of these transitions depends on the contraction ratio β, defined as the ratio of the radii of the large and small tubes. Time-dependent, three-dimensional flow near the contraction lip is observed only for contraction ratios 2 [les ] β [les ] 5, and the flow remains steady for higher contraction ratios. Rounding the corner of the 4:1 abrupt contraction leads to increased values of Deborah number for the onset of these flow transitions, but does not change the general structure of the transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.