Abstract

Accurately predicting the nonlinear dynamic response of aero-engine components is critical, as excessive vibration amplitudes can considerably reduce the operational lifespan. This paper compares experimental and numerical nonlinear dynamic responses of an industrial aero-engine, specifically focusing on the first stage turbine bladed disk with under-platform dampers (UPDs). The friction forces between UPDs and blades result in a strongly nonlinear dynamic response, influenced by stick, slip and separation contact states at the interfaces. These contact states, and the resulting global dynamic responses, are predicted with an advanced industrial modelling approach for nonlinear dynamics. The predictions are compared, updated and validated against measurement data from an operational engine test. Results highlight the importance to validate models against industrial data and show that realistic contact pressure distributions are required for increased prediction reliability. The novelty of this work includes (1) the use of unique industrial experimental data from a fully operational aero-engine, (2) the observation, at the end of engine testing, of real contact conditions in blade/UPD interfaces, (3) detailed modelling of these contact conditions with high-fidelity finite element representations in nonlinear dynamic solvers. Based on this unique industrial validation work, guidelines are proposed to improve the state-of-the-art modelling of nonlinear dynamics in structures with friction contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.